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ABSTRACT: We address the stability of a rotating fluid jet that oscillates and is self- gravitating. The 

fundamental equations are resolved, and the problem is defined. An analytically developed and numerically 

verified general Eigen-value relation is derived. While the fluid jet is unstable for small wave numbers in the 

ax symmetric mode, it is entirely stable in the non-ax symmetric perturbation. In both the ax symmetric 

and non-ax symmetric modes, the stable states are reduced as a result of streaming. For a narrow range of 

wave numbers, the self- gravitating force is only destabilizing in the symmetric mode (m=0), but it stabilizes all 

other perturbations. Academically speaking and during the geological drilling in the 

KEYWORDS: Capillary force; self gravitating; Hydro magnetic Introduction 

 

Chandrasekhar provides the first classical description of the capillary instability of a gas cylinder submerged in 

a liquid under an ax symmetric perturbation. Kruskal & Tuck (I 938), among others, recently looked into the 

stability of a cylindrical plasma (the pinch') with an axial magnetic field. In particular, Rosenbluth has 

demonstrated how the existence of an axial magnetic field can, under the right conditions, maintain the pinch 

when the plasma is contained between conducting walls. Additionally, Rosenbluth has approached the issue 

from the viewpoints of both conventional hydromagnetics (with the usual assumptions of scalar pressure and 

adiabatic changes of state) and the physically more significant viewpoint of the orbits described by the ions and 

electrons in the external magnetic field. Chandrasekhar has proven the MHD stability of a full fluid cylinder that 

is surrounded by a uniform magnetic field. Kendall carried out experiments to gather and analyze annular fluid 

jet stability. 

 

Additionally, he attracted and drew interest in examining the general stability of this model due to its critical 

astrophysical implications. Chandrasekhar provides the first classical description of the capillary instability of a 

gas cylinder submerged in a liquid under an ax symmetric perturbation. The dispersion relation was provided by 

Hasan, Elazab et al., Drazin and Reid, and it is applicable to all ax-symmetric and non-ax- symmetric modes. In 

all kinds of perturbation, Cheng examined the instability of a gas jet in an incompressible liquid. However, it's 

important to note that The Sirignano talk about narrow annular liquid sheets with axisymmetric capillary waves. 

Self-gravitating stability of a fluid cylinder contained in a confined liquid, permeated by a magnetic field, for all 

symmetric and asymmetric perturbation modes is the goal of the current work. 

 

FORMULATION OF THE PROBLEM 
We take a look at an infinite circular Fluid jet in a spinning, oscillating cylinder with an oscillating velocity 

  and rotating with angular velocity  the fluid is assumed to be non-viscous, 

incompressible and perfectly conducting. We shall use a cylindrical polar coordinates      system with 

the z-axis coinciding with the axis of the annular jet. The basic equation are the hydro magnetic equation of 

motion, 

continuity equation. 

The equation of motion  (1) 

Continuity equation  = 0 (2) 

The Poisson’s equation satisfying the gravitational field interior the fluid, and Laplace’s equation 

satisfying the gravitational potential of the medium surrounding the fluid 
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cylinder.   = - 4  (3) 

   

 

(4) 

Where and are the amplitude and oscillation frequency of the velocity, are 

the mass density and kinetic pressure; G is the gravitational constant,  is the gravitational potential interior the 

fluid cylinder and the gravitational potential exterior the fluid cylinder. 

 

EQUILIBRIUM STATE 

In the unperturbed state the system of the basic equation (1) – (4) take the form 

  (5) 

 

(6) 

 

 - 4   (7) 

. (8) 

 

 

These equation are simplified with    and  and the resulting system after simplification is solved. 

The solution obtained are matched at  across the boundary surface of the fluid. The finite solution can 

be easily found. 

 

PERTURBATION ANALYSIS 
For small departure from the unperturbed state, every physical quantity  could be expressed as .

 

   (9) 

Where  stands for  , the amplitude of perturbation  at time t is  

 

  (10) 

 

Where ( )is the growth rate of the instability or rather the oscillation frequency if 

 ) is imaginary and is the amplitude at . The perturbed radii 

distances f the gas cylinder is given by 

where                                      (11) 

 

Where (k) is the longitudinal wave number and ( m an integer) is the transverse wave number. The second term 

on the right-hand side of equation (11) represent the surface wave elevation normalized with respect to         

and measured from the equilibrium position. 

The linearized perturbation equation deduced from the fundamental equations (1)- (4) are given by 

  (12) 

  (13) 

  (14) 

 

  (15) 

  (16) 

This system of equation is simplified on using the time dependence as given above by (10). From the view point 

of the linear theory and based on the linear perturbation technique, every perturbed quantity can be expressed as 

 times an 

amplitude function of . Consequently, on solving (12) we obtain 
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  (17) 

  (18) 

  (19) 

From equation (14) and (17,18,19) we get 

  (20) 

(21) 

 

The solution of equation (20) is given by 

  (22) 

 

Where is an arbitrary constant to be determined and  the ordinary Bessel function of first kind of order . 

Similarly equation (15) and (16), based on the linearzed theory, are solved and first order perturbation and

 are given by 

 

 

 

Where  and  are modified Bessel function of order and  are constants of 

integrations to be determined. 

(23) 

(24) 
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BOUNDARY CONDITION 
The Solution represented by equations ( 22 ) – ( 24 ) must satisfy certain boundary conditions. Under the 

present circumstances these conditions can be given as follows. 

(i) Kinematics boundary condition states that “ The normal component of the velocity   vector 

must be compatible with the velocity of the particles of the boundary surface at  

 

  (25) 

(ii) The gravitational potential and its derivatives must be continuous across the surface. 

(iii) The normal component of the total stress tensor must be continuous across the boundary surface 

from which we have the following dispersion relation: 

                               (25) 

Where is, the dimensional wavenumber, given by   and is defiend by  

Equation (25) is the dispersion relation of gravitational streaming oscillating rotating fluid cylinder surrounded 

by self-gravitating vacuum. It relates the growth rate with the streaming oscillating velocity , 

angular velocity , the wave numbers and other parameters  and . 

 
 

STABILITY DISCUSSION 
It is advisable to analyze the behaviors of the Bessel functions as well as those of the compound functions 

contained in the relation before we discuss the ordinary stability, marginal stability, and instability of the system 

under examination (25). Considering the 

)recurrence relationships (see Abramowitz and Stegun 

 
 

 

Because  is monotonic increasing and positive definite  for all modes of 

perturbation and nonzero values of  , while is monotonically decreasing but 

never negative, i.e., we may show that 

 

) 

 

Also for for all values of  

 

 

For non-rotating and non-streaming fluid  the dispersion relation 

(25) reduces to that of Chandraskhar . Moreover if we put  in (25) we recover the 

relation derived their relation by using the principle of Fermi . 

In absence of the streaming , the dispersion relation (25) can be written in the dimensionless form 

 
(30) 

Where the dimensionless quantity we defined as follow If the 

dispersion relation (30) takes the simpler form 

 

 

(31) 

 

(32) 

Hence we get (33) 

A neutral mode of oscillation is obtained if 

  (34) 
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It is clear that the angular velocity must satisfy the following                    (35) 

Neglecting the rotation effect the dispersion relation (25) reduces to 

 
 

 

(36) 
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CONCLUSION 
1- The streaming has the effect of lowering the stable states in both ax symmetric and non-ax symmetric 

modes.. 

2- The self-gravitating force stabilizes for all other perturbations but only destabilizes in the symmetric mode 

(m=0) for a narrow range of wave numbers. 

3- When the destabilizing behavior of the model is diminished and inhibited, the stability behavior of the 

model follows. 

4- Because we have superimposed gas-oil layer mixed fluids, this phenomena is intriguing to researchers and 

is observed during geological drilling in the earth's crust. 
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